首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   25篇
  2022年   2篇
  2021年   5篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2017年   2篇
  2016年   6篇
  2015年   9篇
  2014年   14篇
  2013年   11篇
  2012年   21篇
  2011年   11篇
  2010年   4篇
  2009年   2篇
  2008年   4篇
  2007年   8篇
  2006年   7篇
  2005年   5篇
  2004年   8篇
  2003年   4篇
  2002年   6篇
  2001年   3篇
  2000年   5篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   5篇
  1995年   4篇
  1994年   8篇
  1993年   3篇
  1992年   6篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
排序方式: 共有200条查询结果,搜索用时 31 毫秒
1.
We have previously described an assay for the attachment of Rhizobium bacteria to pea root hair tips (cap formation) which was used as a model to study the attachment step in the nodulation process. Under all conditions tested, a positive correlation was observed between the percentage of fibrillated cells and the ability of these bacteria to form caps and to adhere to glass, suggesting that fibrils play a role in the attachment of Rhizobium leguminosarum to pea root hair tips and to glass (G. Smit, J. W. Kijne, and B. J. J. Lugtenberg, J. Bacteriol. 168:821-827, 1986). In the present paper the chemical and functional characterization of the fibrils of R. leguminosarum is described. Characterization of purified fibrils by infrared spectroscopy and cellulase treatment followed by thin-layer chromatography showed that the fibrils are composed of cellulose. Purified cellulose fibrils, as well as commercial cellulose, inhibited cap formation when present during the attachment assay. Incubation of the bacteria with purified cellulase just before the attachment assay strongly inhibited cap formation, indicating that the fibrils are directly involved in the attachment process. Tn5-induced fibril-overproducing mutants showed a greatly increased ability to form caps, whereas Tn5-induced fibril-negative mutants lost this ability. None of these Tn5 insertions appeared to be located on the Sym plasmid. Both types of mutants showed normal nodulation properties, indicating that cellulose fibrils are not a prerequisite for successful nodulation under the conditions used. The ability of the fibril-negative mutants to attach to glass was not affected by the mutations, indicating that attachment to pea root hair tips and attachment to glass are (partly) based on different mechanisms. However, growth of the rhizobia under low Ca2+ conditions strongly reduced attachment to glass and also prevented cap formation, although it had no negative effect on fibril synthesis. This phenomenon was found for several Rhizobium spp. It was concluded that both cellulose fibrils and a Ca2+ -dependent adhesin(s) are involved in the attachment of R. leguminosarum to pea root hair tips. A model cap formation as a two-step process is discussed.  相似文献   
2.
Purified human eosinophils were challenged with N-formyl-methionyl-leucyl-phenylalanine, leukotriene B4, platelet-activating-factor, valyl-glycyl-seryl-glutamic acid, phorbol myristate acetate, zymosan, opsonized zymosan and the calcium ionophore A23187 to induce leukotriene synthesis. Reversed-phase high performance liquid chromatography analysis demonstrated the almost exclusive synthesis of leukotriene C4 by eosinophils of 11 healthy donors after challenge with opsonized zymosan [(22 +/- 4) X 10(6) molecules LTC4/cell, mean +/- SE] or the calcium ionophore A23187 [(54 +/- 7) X 10(6) molecules LTC4/cell, mean +/- SE]. The other agents were not capable of inducing leukotriene formation. When in addition to opsonized zymosan N-formyl-methionyl-leucyl-phenylalanine or platelet-activating factor were added a significant increase of the leukotriene C4 synthesis by eosinophils was observed. These results suggest that eosinophils might be triggered to produce considerable amounts of the spasmogenic leukotriene C4 in vivo by C3b- and/or IgG-mediated mechanisms e.g. phagocytosis.  相似文献   
3.
The lectin on the surface of 4- and 5-dold pea roots was located by the use of indirect immunofluorescence. Specific antibodies raised in rabbits against pea seed isolectin 2, which crossreact with root lectins, were used as primary immunoglobulins and were visualized with fluorescein- or tetramethylrhodamine-isothiocyanate-labeled goat antirabbit immunoglobulin G. Lectin was observed on the tips of newly formed, growing root hairs and on epidermal cells located just below the young hairs. On both types of cells, lectin was concentrated in dense small patches rather than uniformly distributed. Lectin-positive young hairs were grouped opposite the (proto)xylematic poles. Older but still-elongating root hairs presented only traces of lectin or none at all. A similar pattern of distribution was found in different pea cultivars, as well as in a supernodulating and a non-nodulating pea mutant. Growth in a nitrate concentration which inhibits nodulation did not affect lectin distribution on the surface of pea roots of this age. We tested whether or not the root zones where lectin was observed were susceptible to infection by Rhizobium leguminosarum. When low inoculum doses (consisting of less than 106 bacteria·ml-1) were placed next to lectin-positive epidermal cells and on newly formed root hairs, nodules on the primary roots were formed in 73% and 90% of the plants, respectively. Only a few plants showed primary root nodulation when the inoculum was placed on the root zone where lectin was scarce or absent. These results show that lectin is present at those sites on the pea root that are susceptible to infection by the bacterial symbiont.Abbreviations FITC fluorescein isothiocyanate - TRIC tetramethylrhodamine isothiocyanate  相似文献   
4.
The soil bacterium Rhizobium infects its leguminous host plants in temperate regions of the world mostly by way of the growing root hairs. Root hair curling is a prerequisite for root hair infection, although sidelong root hair infections occasionally have been observed. The processes underlying Rhizobium -induced root hair curling are unknown.
Computer simulation of root hair growth indicates that one-sided tip growth inhibition by Rhizobium can result in root hair curling when three conditions are simultaneously fulfilled: 1) rhizobial growth inhibition is strong enough to prevent removal out of the tip growth range: 2) root hair surface growth between the attached Rhizobium and the root hair top is inhibited; 3) rhizobial growth inhibition is limited to one side of the root hair.
The results predict that root hair curling by stimulation of tip growth is improbable. This study accentuates the need for information about the growth processes contributing to tip growth in leguminous root hairs.  相似文献   
5.
Diaz CL  Logman T  Stam HC  Kijne JW 《Plant physiology》1995,109(4):1167-1177
Introduction of the pea (Pisum sativum L.) lectin (PSL) gene into white clover (Trifolium repens L.) hairy roots facilitates nodulation by the nitrogen-fixing bacterium Rhizobium leguminosarum biovar viciae, which normally nodulates pea and not white clover (C.L. Diaz, L.S. Melchers, P.J.J. Hooykaas, B.J.J. Lugtenberg, and J.W. Kijne [1989] Nature 338: 579-581). Here, we show that PSL is functionally expressed in transgenic white clover hairy roots transformed with the PSL gene. PSL could be isolated from these roots by affinity chromatography. Immunoanalysis of PSL showed the presence of polypeptides corresponding to the PSL precursor and its [beta] subunits. In addition, we developed a highly sensitive localization technique based on specific binding of a glycan moiety of rat IgE to PSL. Similar to the situation in pea roots, PSL appeared to be localized on the external cell surface of elongated epidermal cells and on the tips of emerging and growing root hairs of transgenic white clover hairy roots. PSL was not observed on normal white clover roots and on hairy roots without the PSL gene. These results show that (a) in transgenic white clover hairy roots, PSL is correctly processed and targeted to root cells susceptible to rhizobial infection, and (b) like in pea roots, PSL is surface bound with at least one of its two sugar-binding sites available for (rhizobial) ligands.  相似文献   
6.
Contact of adjacent root hairs of seedlings of white clover ( Trifolium repens L. cv. Ladino and Louisiana Nolin) led to cell-cell adhesion of root hair tips. The involvement of the root lectin, trifoliin A, in this phenomen was examined in slide cultures of axenically grown seedlings. Trifoliin A was detected by indirect immunofluorescence on root hair tips, which had adhered to one another. Seedlings grown under conditions which specifically reduce the levels of this lectin on the root surface (e.g., in the presence of 15 m M NO3– or 5 m M 2-deoxy- d -glucose) had significantly fewer adhesions of root hair tips. In addition, flushing the slide cultures with 20 m M 2-deoxy- d -glucose resulted in an immediate 4-fold reduction in frequency of tip adhesions. These results are consistent with the lectin cross-bridging model, which predicts that cell-cell adhesions would occur when trifoliin A on root hair tips contacts complementary glycosylated receptors on neighboring root hairs.  相似文献   
7.
We explore a common feature of insect population dynamics, interspecific synchrony, which refers to synchrony in population dynamics among sympatric populations of different species. Such synchrony can arise via several possible mechanisms, including shared environmental effects and shared trophic interactions, but distinguishing the relative importance among different mechanisms can be challenging. We analyze interannual time series of population densities of the larch budmoth, Zeiraphera griseana (Lepidoptera: Tortricidae), along with six sympatric larch-feeding folivores from a site in the European Alps 1952–1979. These species include five lepidopterans, Exapate duratella, Ptycholomoides aeriferana, Spilonota laricana, Epirrita autumnata and Teleiodes saltuum, and one hymenopteran sawfly Pristiphora laricis. We document that the highly regular oscillatory behavior (period 9–10 years) of Z. griseana populations is similarly evident in the dynamics of most of the sympatric folivores. We also find that all of the sympatric species are phase synchronized with Z. griseana populations with half of the sympatric species exhibiting nonlagged phase synchrony and three of the species exhibiting 2–5 year lags behind Z. griseana populations. We adapt a previously developed tritrophic model of Z. griseana dynamics to explore possible mechanisms responsible for observed phase synchronization. Results suggest that either shared stochastic influences (e.g., weather) or shared parasitoid impacts are likely causes of nonlagged phase synchronization. The model further indicates that observed patterns of lagged phase synchronization are most likely caused by either shared delayed induced host plant defenses or direct density-dependent effects shared with Z. griseana.  相似文献   
8.
Spinal muscular atrophy (SMA) is a heterogeneous group of neuromuscular disorders caused by degeneration of lower motor neurons. Although functional loss of SMN1 is associated with autosomal-recessive childhood SMA, the genetic cause for most families affected by dominantly inherited SMA is unknown. Here, we identified pathogenic variants in bicaudal D homolog 2 (Drosophila) (BICD2) in three families afflicted with autosomal-dominant SMA. Affected individuals displayed congenital slowly progressive muscle weakness mainly of the lower limbs and congenital contractures. In a large Dutch family, linkage analysis identified a 9q22.3 locus in which exome sequencing uncovered c.320C>T (p.Ser107Leu) in BICD2. Sequencing of 23 additional families affected by dominant SMA led to the identification of pathogenic variants in one family from Canada (c.2108C>T [p.Thr703Met]) and one from the Netherlands (c.563A>C [p.Asn188Thr]). BICD2 is a golgin and motor-adaptor protein involved in Golgi dynamics and vesicular and mRNA transport. Transient transfection of HeLa cells with all three mutant BICD2 cDNAs caused massive Golgi fragmentation. This observation was even more prominent in primary fibroblasts from an individual harboring c.2108C>T (p.Thr703Met) (affecting the C-terminal coiled-coil domain) and slightly less evident in individuals with c.563A>C (p.Asn188Thr) (affecting the N-terminal coiled-coil domain). Furthermore, BICD2 levels were reduced in affected individuals and trapped within the fragmented Golgi. Previous studies have shown that Drosophila mutant BicD causes reduced larvae locomotion by impaired clathrin-mediated synaptic endocytosis in neuromuscular junctions. These data emphasize the relevance of BICD2 in synaptic-vesicle recycling and support the conclusion that BICD2 mutations cause congenital slowly progressive dominant SMA.  相似文献   
9.
10.
Understanding gene regulatory networks in mammalian cells requires detailed knowledge of protein-DNA interactions. Commonly used methods for genome-wide mapping of these interactions are based on chromatin immunoprecipitation. However, these methods have some drawbacks, such as the use of crosslinking reagents, the need for highly specific antibodies and relatively large amounts of starting material. We present DamID, an alternative technique to map genome-wide occupancy of interaction sites in vivo, that bypasses these limitations. DamID is based on the expression of a fusion protein consisting of a protein of interest and DNA adenine methyltransferase (Dam). This leads to methylation of adenines near sites where the protein of interest interacts with the DNA. These methylated sequences are subsequently amplified by a methylation-specific PCR protocol and identified by hybridization to microarrays. Using DamID, genome-wide maps of the binding of DNA-interacting proteins in mammalian cells can be constructed efficiently. Depending on the strategy used for expression of the Dam-fusion proteins, genome-wide binding maps can be obtained in as little as 2 weeks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号